Thursday, March 24, 2016

Guest Blog Post on Citizen Science: What Academic Scientists Can Do More Of

The front lines of science education and expanding scientific literacy are not in the ivory towers of universities, but in pre-college science education at all levels. Discover the Microbes Within! The Wolbachia Project has put many of us in contact with some of the most inspirational people we know - educators that love science, work hard, and want to bring that love to countless middle and high school students, and sometimes younger levels. Since 2007, the Wolbachia Project has been working with Carolyn Wilczynski. I first met Carolyn at a Wolbachia Project workshop held at Cornell University during that summer, and a couple of days ago, I received this message from her. It struck a chord with me, and perhaps it will do the same for you. She has agreed to let me post the message as she wants it to go: "as far and as wide as possible!  There are kids out there who LOVE science.  I hear them say it and I see it in their actions.  They need scientists to inspire and encourage them.  A little goes a long way.  Truly."


This school year, I started up a science club, hoping to encourage students to pursue a study of something - anything related to science or science inquiry.  A small grant from our district alumni foundation helped to fund the endeavor and I was able to buy supplies, pay entrance fees, get kids to/fro the fairs, and buy t-shirs and food.  We all learned a lot.  I took 10 kids to the local science fair and 8 advanced to the regional fair.  2 will now advance to the state-level and who knows beyond that!  Not too bad for a novice!

Perhaps because of my own bias towards organismal biology, most of the projects were biology based and most included some manner of organismal biology.  From Madagascar hissing cockroaches detecting pesticides in produce to humans yawning to evolutionary relationships of fish species using protein gel electrophoresis.  The projects were varied.  The work to get there was insanely time consuming (which is why you haven’t heard much from me lately!).  One thing I’ve learned is that while science depends on peer review and feedback, not so with science fairs.  It took a personal request to the local fair coordinator to reach out to a judge to provide feedback to a student.  That feedback resulted in a “highest honor” placement and a top award at the regional fair.  Kids are quick learners!  I hope that my suggestion to provide feedback to all students at the local science fair next year is taken to heart. 

The other lesson learned is that the majority of judges at science fairs are engineers and the sponsors are engineering organizations.  I realize that it’s a sample size of 2, but I reach out to all of you to volunteer to be a judge at a local, regional or state science fair.  Volunteer to speak at a science fair - again, the bias is towards engineers, The mindset of an engineer vs scientist is a bit different, though admittedly there is a lot of overlap.  Some of my students who did projects on organismal biology left yesterday’s fair discouraged.  One boy kept asking me what he’d done wrong.  I had no good answer for him.  His project was good, scientifically sound and completely appropriate for a science fair.  Yet he came away with only a certificate of participation.  One girl was asked by an engineer judge, why she provided water in her cockroach enclosures, since they might cause the produce to get moldy faster.  Nice suggestion, except that even roaches need to drink water.  The cleverness of her study was lost on trying to solve the problem of mold: scientist vs engineer. 

Lastly, if you are members of professional societies and have any ability to do so, I would encourage sponsoring an award.  While monetary awards are always appreciated by the fair sponsors and the kids (even as little as $25 goes a long way to say “way to go”), certificates or books also make good awards.  The local geological society in our area provided a fossil specimen.  Who wouldn’t love a rock as a prize?  Students know in advance who the sponsors are and the projects coming to the fair reflect that.  So again, basic science is left in the dust.  These young people, whether or not they become scientists, will at the least become voters in the future.  Science fairs give them a good appreciation for what scientists do and may pay dividends in support of science in the future. 

The New York State Science Congress is June 4th in Buffalo (, if you can find a way to support basic science in some way at this fair, I encourage you to do so.  Or perhaps forward this to friends and colleagues who live nearer to Buffalo.  Or if you can reach out to ESA, ABS, BSA, or whatever professional organization that you belong to, it would support science in those fields. 

Thanks for reading my soapbox speech! 


Thursday, February 4, 2016

Overdue community effort on getting the hologenome concept right

More and more, it is becoming clear that the population biology processes affecting animal and plant phenotypes interface with ecosystems science and the ecology of host-associated microbiomes. Indeed, the so-called individual animal or plant is increasingly appreciated as a "holobiont" comprised of the host plus all of its associated microbes. Resultantly, all genomes of the holobiont have been termed the “hologenome”. These terms and associated concepts are relatively new and liable to misinterpretation. Our new preprint at bioRxiv is a community effort to pull various biologists and philosophers together around a definitive set of arguments that accurately reflect the original literature. As the largest collection of authors to date in this area, spanning fifteen junior and senior investigators in the life sciences and philosophy, we think this article will encourage productive discussion to stimulate new ideas and understanding on holobionts and hologenomes that consider the link between phenotype and genotype. I hope you check out the short piece. Feedback is most welcome!

Getting the hologenome concept right: An eco-evolutionary framework for hosts and their microbiomes

Tuesday, December 8, 2015

Horizontal gene transfer from two bacterial genomes into one animal nucleus

For the past two weeks, the science of horizontal gene transfer (exchange of DNA between unrelated organisms such as between microbes and animals) has been a source of scholarly debate, specifically for the case of tardigrades (see Atlantic article). Our latest lab publication in PeerJ (an affordable, transparent, and open access journal) by first author @DNAdiva87 will not cause such a ruckus. Based on DNA sequencing, analysis, and importantly staining of the bacterial inserts in the animal genome, we show for the first time transfer of hundreds of genes from two different Wolbachia bacteria into one host grasshopper genome. Graphical and text abstract are enclosed below. It is also, as of today, featured at the top of the PeerJ journal site.

This work could not have been done without the talents of a great scientist like Lisa and our colleagues in Spain. They and the work were featured in a podcast for "This Week in Microbiology" on 12.17.15. You can check it out here from time 40:48 - 54:25.

Hybrid zones and the consequences of hybridization have contributed greatly to our understanding of evolutionary processes. Hybrid zones also provide valuable insight into the dynamics of symbiosis since each subspecies or species brings its unique microbial symbionts, including germline bacteria such as Wolbachia, to the hybrid zone. Here, we investigate a natural hybrid zone of two subspecies of the meadow grasshopper Chorthippus parallelus in the Pyrenees Mountains. We set out to test whether co-infections of B and F Wolbachia in hybrid grasshoppers enabled horizontal transfer of phage WO, similar to the numerous examples of phage WO transfer between A and B Wolbachia co-infections. While we found no evidence for transfer between the divergent co-infections, we discovered horizontal transfer of at least three phage WO haplotypes to the grasshopper genome. Subsequent genome sequencing of uninfected grasshoppers uncovered the first evidence for two discrete Wolbachiasupergroups (B and F) contributing at least 448 kb and 144 kb of DNA, respectively, into the host nuclear genome. Fluorescent in situ hybridization verified the presence of Wolbachia DNA in C. parallelus chromosomes and revealed that some inserts are subspecies-specific while others are present in both subspecies. We discuss our findings in light of symbiont dynamics in an animal hybrid zone.
Cite this as
Funkhouser-Jones LJ, Sehnert SR, Martínez-Rodríguez P, Toribio-Fernández R, Pita M, Bella JL, Bordenstein SR. (2015Wolbachia co-infection in a hybrid zone: discovery of horizontal gene transfers from two Wolbachia supergroups into an animal genomePeerJ 3:e1479